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Abstract

We test the out-of-sample trading performance of model-free reinforcement learning (RL)

agents and compare them with the performance of equally-weighted portfolios and tra-

ditional mean-variance (MV) optimization benchmarks. By dividing European and U.S.

indices constituents into factor datasets, the RL-generated portfolios face different sce-

narios defined by these factor environments. The RL approach is empirically evaluated

based on a selection of measures and probabilistic assessments. Training these models

only on price data and features constructed from these prices, the performance of the RL

approach yields better risk-adjusted returns as well as probabilistic Sharpe ratios com-

pared to MV specifications. However, this performance varies across factor environments.

RL models partially uncover the nonlinear structure of the stochastic discount factor. It

is further demonstrated that RL models are successful at reducing left-tail risks in out-

of-sample settings. These results indicate that these models are indeed useful in portfolio

management applications.
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1. Introduction and literature review

Advances in computing and engineering bring about intriguing challenges in the realm

of nonlinear modeling problems that are unfeasible to solve analytically and require more

complex methods. The advent of reinforcement learning and stochastic control has been

deployed with great success onto the board games problems, notably TD-Gammon (Tesau

& Tesau, 1995) or later ventures of the IBM DeepMind, where the models achieve a high

level of winning rates against other programs as well as human professional players1 (Sil-

ver et al., 2016). Growing digitization and automationin the asset management industry

provides a natural ground for experiments with stochastic control because of suitable

mathematical specifications of the problem. Numerous attempts to apply reinforcement

learning have been conducted with promising results especially using direct reinforcement

or inverse reinforcement methods (Moody et al., 1998), but until recently problems as-

sociated with training brittleness and high level of dimensionality did not allow for deep

networks to be utilized during the process as the learning process proved often to be

unstable.

In the model-free representation of the environment—in contrast to the model-based—

there are two main approaches that allow for the use of deep learning, often combined

in parallel. In Q-learning, an experience buffer storing transition states has improved

training significantly (Charpentier et al., 2020). In Policy Optimization methods, various

parallelism techniques as in Schulman et al. (2017) or other tweaks to the architecture2

have been presented in order to address the issues described earlier. These algorithms

that are on the forefront of research have proven to be useful for benchmark problems

and given their promising results this provides a motivation to test them on a domain

problem in finance—the Portfolio Allocation problem.

Portfolio construction is an important problem in finance, with an objective to con-

struct an optimally performing portfolio. Traditionally, it has been proposed that this

1Such as the IBM Deep Blue playing Garry Kasparov, a world champion in 1996-1997. The symbolic
win of Deep Blue in 1997 was a landmark victory for the computer over a champion player.

2Gradient clipping, Monte Carlo sampling or delayed networks are among many proposed ideas as will
be described later.
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construction consists in two-steps, with a parametric approach to the estimation of mo-

ments and optimizing over a grid of feasible portfolios (Markowitz, 1952). It has been

established that due to high dimensionality and short sample histories, the estimation

is unstable (Merton, 1980), and various methods have been proposed to stabilize this

process such as robust specifications with “uncertainty structures” (Goldfarb & Iyengar,

2003), Bayesian approaches (Aguilar & West, 2000) or incorporating equilibrium returns

and views about asset returns (Black & Litterman, 1992). These have proven to have

ad hoc advantages but often fail due to estimation errors as described in DeMiguel et al.

(2009).

The problem of nonlinear effects and interaction effects present in the structure of

the cross-section of the returns result in ambiguity and a “zoo” of factors attempting to

explain the difference in risk premia (Harvey et al., 2016). Our work is hence tangent to the

problem of asset pricing in the field of machine learning applications in the domain space.

Recovering the Stochastic Discount Factor3 for asset pricing models using nonlinear effects

(Gu et al., 2020) or regularization approaches (Kozak et al., 2020), and further review

of deep learning using an array of firm-specific and macro features under a no-arbitrage

machine learning problem specification (Chen et al., 2019) show that the SDF is well

approximated by linear factor models, although there are robustness advantages to using

machine learning methods.

Although the goal is not retrieving the SDF explicitly, an application of this approach

is used for actively managing exposures and risks, found implicitly by the model and

incorporated into the decision making within the RL framework with various constraints.

This can provide benefits to algorithmic trading strategies complementing traditional

tools. A similar effort in Cong et al. (2020) based on a complex model-based multi-armed

bandit RL system strives to make RL more interpretable for investing through considering

logits as scoring metrics for allocation. In this paper, a different approach is taken based

on a coarser price history used for training and no use of firm-specific or macro variables

3SDF is defined as the transformation of a Stochastic Discount Factor portfolio lying on the capital
market line such that the expected excess return is zero. For more general definition see Danthine &
Donaldson (2014).
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in order to conduct a benchmark study similar to the method described in DeMiguel et al.

(2009).

The contribution of this work to existing literature is as manifold as the models pre-

sented herein. Firstly, we offer a comprehensive overview and introduction to the applica-

tion of reinforcement learning on problems of portfolio optimization and asset allocation.

Secondly and in the context of this distinct set of problems, we introduce state-of-the-art

algorithms of learning, in particular reinforcement learning, and outline their pseudo-

code and implementations specifically for applications in the domain of Finance. As these

learning algorithms are applied for a wide range of real-life utilization, ranging from ap-

plications in medicine, autonomous control, to robotics, specifying them explicitly for

asset allocation problems offers a thorough overview of their potential to academics and

practitioners in Finance alike.

Thirdly, we demonstrate how different reinforcement learning algorithms perform for

several types of equity categories that are clustered by a Carhart four factor model. These

equities are constituents of the S&P 500 and its European equivalent, the Bloomberg 500

index. We compare this performance with traditional allocation methods, such as global

minimum variance portfolios, equal risk contribution, and factor-constrained portfolios.

We provide robust evidence that the model-free learning approaches outperform mean-

variance approaches. Further, we show that performance of these RL-generated portfolio

is more stable indicating that they are capturing nonlinearities of the stochastic discount

factor. However, we also find that this outperformance is not universal across different eq-

uity sets if the 1/N portfolio is benchmarked. For some datasets, RL-portolio outperform

while for a small selection of subsamples, they underperform.

Lastly, and of the highest relevance to praciticioners, we show that RL-generated

allocation strategies reduce left-tail risks in out-of-sample exercises, translating to robust

hedging benefits of these RL approaches. This, in turn, offers another layer of applicability

and motivation as well as justification of the use of RL systems.

Further, we attempt to explain how and why these RL-generated portfolios perform

better and aim to explain how the actions of portfolio rebalancing are derived from the
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reinforcement learning algorithms. This benefits the general direction of explainable Ar-

tificial Intelligence, in which actions based on AI should be justifiable and explainable

(Adadi & Berrada, 2018, Rudin, 2019).

The remainder of this paper is structured as follows. Section 2 outlines the gen-

eral framework of asset allocation optimization. It further introduces the reinforcement

learning approaches with direct application to these asset allocation problems. Section 3

provides an overview of the raw equity and ETF data. This section also presents the clus-

tering of our raw datasets and outlines how the equity subsampling is executed. Section 4

specifies how models are trained and outlines the rolling testing approach for performance

comparison. Section 5 presents and discusses our results. This work concludes in Sec-

tion 6.

2. Methodology

2.1. General framework

Consider an environment E consisting of N securities that are contingent on a partially

observed continuous state space4 S of which wn,t+1 ⊂ S are the weights of a portfolio that

constitute actions at with state st := pt, where pt is the respective price vector at time t.

A portfolio in time t is a unique set of actions at−1 and is determined by a reward r(at, st)

that we wish to maximize in [t0, T ), where for each t a trade takes place such that

at−1 = wt =


w1,t

...

wN,t

 ,

N∑
i=1

wi,t = 1 , wi,t ∈ R+. (1)

Given a portfolio wt and state st, we define a simple arithmetic return in the form of

rt = st
st−1
− 1, and derive the simple portfolio return and variance for an N -dimensional

4Assuming that a particular observation of state st does not describe the state of the environment as
modelled by a multivariate stochastic process.
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random variable r as

µ := E[r] ≈ E


r1

...

rN

 =


1
T

∑T
t=1 r1,t

...

1
T

∑T
t=1 rN,t

 , (2)

σ2 := E[(r− E[r])2] ,Var[ri] =
1

T − 1

T∑
i=1

(rt − µr)2, (3)

from which we obtain the return and volatility of a portfolio as:

µp = wTµ , σ2
p = wTΣw,

where Σ is an element-wise expansion of the left expression in Eq. (3).

Having defined these estimated quantities,5 we would like to maximize the reward

function across the equidistant grid t0, . . . , T with distances h. We choose the Sharpe

Ratio as reward function, which reads

w = argmax
w∈G

√
h
E[rt,t+h]√
Var[rt,t+h]

, (4)

where we satisfy the set of affine constraints G as defined in Meucci (2005).

This general maximization problem is typically handled with the use of quadratic

programming. However, we may exploit this formulation and rewrite the problem without

any loss of generality such that it is broadly applicable to the reinforcement learning

setting

max
Θ

T∑
t=1

E[γr(at, st)], (5)

where γ stands for a time-discounting factor and Θ the parametric expression of the non-

linear models used to estimate the value or policy functions depending on the architecture

of the model used.

5Note that there are many options one might take in order to pursue less variance in the estimates as
outlined in Elton et al. (2006).
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2.2. Portfolio Allocation As An Optimization Problem

In a seminal work of Markowitz (1952) the problem of asset allocation is defined such

that given a smooth utility function of an investor U(w), the investor wishes to solve the

following problem:

min wTΣw

s.t. wTµ = ρp, ρp ∈ R+

wT1 = 1,

(6)

for a target return ρp. It appears that this problem has a closed form solution under the

constraint that Σ is a full-rank non-singular matrix, where we formulate a Lagrangian:6

L(w, λ, δ) =
1

2
wTΣw − λ(wTµ− ρp)− δ(µ1− 1),

with first order conditions:

Σw−λµ− δ1 = 0

µ1 = ρp

wT1 = 1

or equivalently:

w = λΣ−1µ+ δΣ−11.

Using constraints from Eq. (6), we may re-parameterize the problem (Bianchi, 2019) as:

µTw = λµTΣ−1µ+ δµTΣ−11

1Tµ = λ1TΣ−1µ+ δ1TΣ−11,

6Note that we divide by 2 for convenience.
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and which yields a solution

w∗ = ρp
1

G
(1TΣ−11Σ−1µ− 1TΣ−1µΣ−11)︸ ︷︷ ︸

~v
n×1

+
1

G
(µTΣ−1µΣ−11− 1TΣ−1µΣ−1µ)︸ ︷︷ ︸

~s
n×1

, (7)

where G = (µTΣ−1µ)(1TΣ−11) − (1TΣ−1µ)2. This solution is of great significance to

the argument since ~v and ~s are not based on changing a free parameter. Two important

observations follow.

Firstly, the vectors ~v and ~s from Eq. (7) span the entire set of feasible mean-variance

portfolios as their linear combination. This is shown by considering q as a minimum

variance portfolio resulting from the solution of Eq. (6). If there exists an α such that

α~v + (1 − α)(~v + ~s) the weights of q are well defined. Consider an α = 1 − ρp, then it

follows that (1 − ρp)~s + ρp(~s + ~s) = ~s + ~vρp. Secondly, We generate the set of feasible

portfolios as affine combinations of any two distinct portfolios, which follows directly from

the existence of α.

The efficient set of portfolios forms the efficient frontier, however only portfolios above

the global minimum variance portfolio such as the efficient portfolio—defined as the first-

order contact of the capital market line7 and the frontier—are interesting to our applica-

tion since they give the maximum return for the least amount of risk.

Naturally, a question of more complex optimization objectives arises which yields

different solutions and characteristic portfolios. These objectives include the common

quadratic risk utility, the global minimum variance portfolio (GMV), equal risk contri-

bution, and factor-constrained portfolios. We refer the reader to Appendix A for their

formal definitions as these specifications constitute the benchmarks in this study. These

are all versions of quadratic programs with convex constrains due to the fact that they

cannot be easily reduced to a set of linear equations and solved as we have demonstrated

with Eq. (6). One of the constraints is for example enforcing an element-wise constraint

w � 0 known as the long-only constraint. Commonly, a gradient-based method is used

7This is the line which under the assumption of a Capital Asset Pricing Model contains all possible
portfolios. See Sharpe (1964).
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for this type of general conic problem such as the SQLSP solver (Kraft, 1988).

2.3. Reinforcement Learning Paradigm

Learning a pattern from data is traditionally a process that does not feature a feed-

back8 from the system as in a typical supervised learning setting. Reinforcement learning

tries to address this issue of a dynamic environment by internalizing a framework of states,

actions and values that are endogenous and often feature a lot of noise. This allows for

a more holistic view of the system to be developed as some environments tend to have

highly nonlinear structures.

In Fig. 1 we see a general setting of such a problem, where a sequence of states and

rewards is passed on through the agent, and a policy drives a set of actions that are

fed back into the environment. This interaction with the environment uses the Markov

Decision Process9 as a framework, establishing the features of an artificial intelligence

problem (Sutton & Barto, 2018).

E - Environment
rt+1

st+1

RL Algorithm

∏
- Policy

st

rt

at

Agent

Figure 1: Simplified flow chart of a reinforcement learning control flow.

8We define this feedback as a signal being sent back to the model in a circular fashion.
9Although we are arguably dealing with a Partially Observed MDP in this work, all of the definitions

are applicable without the assurance of convergence in optimality. See chapter 9 in Poole & Mackworth
(2017)
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2.3.1. Markov Decision Process

In what follows, we define a Markov Decision Process (MDP) as a 5-tuple character-

izing a dynamic decision problem of (S,A,P ,R, γ) where

• S is a countable set of states, where st ∈ S : P[st | st−1] = P[st |
⋃t−1
j=1 sj], satisfies

the Markov Property.

• A is a countable set of actions.

• P is a transition matrix P : S × S × A → [0, 1]. A transition probability s → s′ is

thus Ps,s′ = P[s′ | s, a] =
∑

r∈R P[s′, r | s, a].

• R is a reward generating function R : S ×A → R.

• γ is a scalar discounting the value of r(st, at), while the agent maximizes r(st+1, at+1).

An agent typically features a mechanism that determines a policy π, according to a learned

experience with the use of a model. This policy is then evaluated using a value function,

or a Q-function in order to improve the iteration of the algorithm and learn the dynamics

of the environment.

In this vein, we define a policy π as a mapping π : S → A. An optimal10 policy is

one such that given a value function V π(s), there is no π′ with V π(s) ≤ V π′(s) ,∀π′ � π.

Further, we define a value function as a function that determines the expected return

from a state s under π, which reads

V π(s) := Eπ[Rt | st] = Eπ
[ ∞∑
j=0

γjrt+j+1 | st
]
, ∀st ∈ S (8)

The Q-function is then defined as a function that defines the value of taking action at,

given a state st under a policy π as

Qπ(s) := Eπ[Rt | st, at] = Eπ
[ ∞∑
j=0

γjrt+j+1 | st, at
]

(9)

10It can be shown that a stationary MDP always converges in the limiting scenario, see Poole &
Mackworth (2017, Chapter 9).
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These functions defined in Eq. (8) and Eq. (9) are interconnected in a sense that they

can be defined in terms of each other in a recursive manner (Poole & Mackworth, 2017,

p. 59). This fundamental relationship in reinforcement learning is known as the Bellman

Equation and allows for a solution of the MDP through an approach involving a dynamic

programming setup, where current and subsequent states share a relation that can be

iterated upon to reach an optimal point.

From the previous two definitions, we observe that Rt can be decomposed to

Rt = rt+1 + γ
[ ∞∑
j=1

γjrt+j+1

]
.

This is the current reward and sum of all subsequent rewards discounted accordingly.

Hence, we obtain the Bellman recursive relation for V π(s) as:

V π(s) = Eπ
[
rt+1 + γ

( ∞∑
j=1

γjrt+j+1

)
| st
]
. (10)

The expectation operator can be further expanded as:

∑
a∈A

π(a | s)
∑

s′∈S, r∈R

P(s′, r | s ∪ a)
[
r + γV π(s′)

]
.

We may think about the expression above as the logic of the reinforcement learning

system, where given a state s, all of the possible and attainable states s′ return a reward

r based on some dynamics given by the probability distribution we are summing upon.

Thus, the value function provides a solution to Eq. (10) and the ultimate goal becomes

to learn V π(s), or Qπ(a, s).11

2.3.2. Solution to the MDP

In order to solve an MDP we need to find a policy π∗ that satisfies the relation

π∗ ≥ π′ which is measured by the value functions and their respective sufficient relation

for optimality, V π∗(s) ≥ V π(s). We do not prove the existence of such policy, but assume

11The reasoning we have developed may be applied to the Q-function in a similar fashion depending
on the optimization objective of the algorithm.
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that there is always a policy that satisfies this inequality and is optimal. This gives rise

to the optimization problem we face in the form of

V ∗(s) = max
π

V π(s),

Q∗(s, a) = max
π

Qπ(s, a).

(11)

Notice that we may rewrite Q∗(s, a) in terms of V ∗(s) as:

Q∗(s, a) = Eπ
[
rt+1 + γV ∗(st+1) | st, at)

]
. (12)

Therefore, we arrive at a solution by maximizing the above expression such that an optimal

policy is derived from the optimal value function as described in (Poole & Mackworth,

2017, p. 404):

V ∗(s) = max
a

Q∗(s, a),

π∗(s) = argmax
a

Q∗(s, a).
(13)

There are two general approaches that we are considering in the model-free setup that

provide a numerical way of tackling the problem. Note that the algorithms used in the

empirical experiment depend on these techniques to a smaller or larger extent and combine

or extend the ideas described in this chapter.

2.3.3. Q-learning

One of the methods combining a dynamic programming approach and Monte Carlo

sampling of expected values in the solution of Eq. (12) is Q-learning. It uses an off-

policy method, a method that tries to improve the policy that is different from the policy

used to generate the actions. Estimation of the reward for possible future actions is done

without following any sort of greedy update—in contrast to on-policy methods. In order to

understand the generic Q-learning algorithm we define the TD error as an error resulting

from an update in the estimated value of s and the more optimal estimate following from
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the recurrence relation rt+1 + γV (st+1) as

δt
.
= rt+1 + γV (st+1)− V (st). (14)

This error is relevant because as noted in Sutton & Barto (2018, Chapter 6) it results from

a guess of another bootstrap. Although this might be a questionable approach, it provides

us with a way to describe more complex settings without a model of the environment which

is advantageous in problems of high-dimensional state and action spaces such as portfolio

allocation problems.

In Q-learning the TD error is reformulated for the Q-function that attempts to directly

estimate the optimal Q-function, Q∗(s, a). It feeds from the grid of values—also known

as Q-table—chooses the best one and updates the Q-table with an estimate using the TD

error. Pseudo-code of a general algorithm for solving the portfolio allocation problem is

outlined in Appendix B, in Fig. B.11.

2.3.4. Policy Gradient

In contrast to learning a value function and an action-value estimate, Policy Gradient

attempts to learn a policy that is parameterized by a mapping f(X) → θ : π ∼ πθ,

often in the form of an Artificial Neural Network or a Recurrent Neural Network (Silver

et al., 2016). Value functions are thus not involved in the process of selecting an action,

although it might still play a role in helping to estimate π(a |, s,θ). In order to estimate

this function one needs to perform a stochastic update with regard to the gradients of an

error typically in the form of

J (θ) : θt+1 ← θt + α∇J (θt). (15)
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In the process of solving the optimization objective to learn θ, the gradient of J (θ) is

calculated as

J (πθ) = Eπθ [R]

=

∫
s∈S

P πθ(s) ds

∫
a∈A

πθ(s, a)R da.
(16)

The gradient of θ then reads

∇J (πθ) =

∫
s∈S

P πθ(s) ds

∫
a∈A
∇πθ(s, a)R da

=

∫
s∈S

P πθ(s) ds

∫
a∈A

πθ(s, a)∇ ln[πθ(s, a)]R da.
(17)

This important result allows us to derive the policy gradient that we want to optimize

as described in Mandic (2019). We closely follow Sutton & Barto (2018) and Poole &

Mackworth (2017) to obtain a policy gradient. From the result in Eq. (17), extending the

one-step MDP to a multi-step MDP, for a suitable continuous differentiable policy π(s, a)

and the expectation of future rewards at each step J (θ), the Policy Gradient reads

∇J (πθ) = Eπθ
[
∇ ln[πθ(s, a)]Qπ(s, a)

]
. (18)

There are potential benefits from optimizing the policy gradient instead of the typical

value function approach as it has been shown to converge more easily in some cases. We

refer to Necchi (2016) for an extensive analysis of policy gradients and their derivation.

A general setup of a Policy Gradient algorithm with an actor and critic network is found

in Appendix B, Fig. B.12. Note that simpler versions of the algorithm without TD error

updates exist such as REINFORCE or other episodic Monte Carlo methods as described

in (Sutton & Barto, 2018, Chapter 13), but due to problems with sequential data12 we

are not considering their application for our use case.

12These algorithms are not well equipped to deal with non-iid sampling of the episodes that we use for
learning.
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2.4. Model-Free Algorithms in Continuous State-Action Space

This section briefly describes the workings of the algorithms used for the benchmark

study. All of them are classified as model-free due to their ability to learn the dynamics of

E without prior modeling on the transition matrix P . We choose these algorithms given

their ability to learn in a setting with limited information in contrast to linear models that

often suffer from sampling issues (Aue & Horváth, 2013) and structural breaks (Andreou

& Ghysels, 2002).

2.4.1. Actor Critic (A2C)

Actor Critic or A2C is a class of methods that address a problem with estimating the

baseline function bt(st) for rt+1 | st and stabilize the training of the algorithm. During the

update on line 7 in algorithm B.12 an iterative step αQ(s, a)∇θ ln π(a, s) is taken in order

to estimate ∇θE[Rt | st, at]. It has been proposed in Williams (1992) that the variance

of this estimate can be reduced without introducing any bias by subtracting a baseline

function estimated by the value function. Therefore the update becomes:

α(Q(s, a)− bt(st))∇θ lnπ(a, s)

bt(st) ≈ V π(s).

(19)

The expression (Q(s, a)− bt(st)) of Eq. (19) is commonly known as the advantage, where

the baseline is known as the critic and the policy function as the actor (Mnih et al., 2016).

The idea as illustrated in Fig. 2 is to estimate transitions of P not only at the first stage

of the transition but also involving subsequent states.13

2.4.2. Deep Deterministic Policy Gradient (DDPG)

Instead of modelling π(· | s, θ) as a probability distribution, a deterministic decision

function ρ : µρ(s | θ) → [0, 1] is postulated, mapping states to actions in a one-to-one

13For more detailed treatise on this multi-episodic approach and proof of the Policy Gradient theorem
in this setting see chapter 13.5-13.6 in Sutton & Barto (2018).
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E - Environment
st+1

rt+1

∏
- Policy

st

rt

at

Actor

Critic

V π(st, rt)

δt
TD Error

Figure 2: Simplified flow chart of an on-policy actor critic (A2C) control flow.

relation. From the result in Eq. (17) we redefine the loss function as

J (θ) =

∫
s∈S

µ̃(s)Q(s, µ(s)) ds (20)

where µ̃(s) =
∫
S
∑∞

k=1 γ
k−1µ0(s)µ(s′, k) ds is a discounted distribution defined recursively

as in Weng (2018). Hence, a gradient can be taken and an update performed as

∇J (θ) =

∫
s∈S

µ̃(s)∇aQ(s, µ(s))∇θµ(s) ds

θt+1 ← θt + α∇aQ(st, at)∇θµ(s).

(21)

It is apparent that a deterministic policy likely does not introduce enough exploration14

in the algorithm. Deep Deterministic Policy Gradient (DDPG) tries to address this by

inducing exploration with a noise process15 N to the deterministic policy such that

µ̇(s) = µ(s) +N .

14In other words that it does not estimate the Q-function well enough due to insufficient noise and
converges to a locally optimal specification. See chapter 11.3 in Poole & Mackworth (2017).

15Often in the form of a generic Ornstein-Uhlenbeck process xt : dxt = θ(µ − xt)dt + σdBt, where Bt

is a standard Brownian motion.
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DDPG is usually learned in mini-batches16 using an experience replay to obtain an ap-

proximately i.i.d. sample. It also performs a soft-update in order to stabilize the learning

of the actor and critic networks (Mnih et al., 2013). A general pseudo-code for the DDPG

algorithm as presented in Lillicrap et al. (2016) is outlined in Appendix B, in Fig. B.13.

2.4.3. Proximal Policy Optimization (PPO)

Given the difficulty with the TD error approach, sometimes the gradient ascent algo-

rithm results in very large policy updates that might destabilize the optimization process

and problems in convergence might arise. Circumventing this, an additional constraint is

proposed to stabilize this learning. From Eq. (17) and Eq. (19), we observe that a typical

actor critic maximizes:

J (θ) = E[∇θ lnπ(at)(Q(st, at)− bt(st))]. (22)

The so-called Trust Region methods such as TRPO redefine the surrogate objective func-

tion as a ratio of the current policy function function and the old policy function (Schul-

man et al., 2017) and introduce a Kullback-Leibler divergence constraint17 such that the

maximization problem is rewritten as:

max E
[ π(at)

πold(at)
(Q(st, at)− b̂t(st)

]
s.t. E[DKL(πold ‖ π)] ≤ η.

(23)

PPO is an improvement over TRPO that addresses the relative difficulty of training this

sort of specification by introducing a clipped surrogate objective function without the KL

16By splitting the learning data and computing gradient on a subset to optimize the learning during
gradient descent optimization.

17This is a measure of relative entropy between two distributions defined as DKL(Q ‖ G) =∫
R P (x) ln(

Q(x)
G(x) )dx for distributions defined on the same probability space.
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constraint in the form of

Uoriginal = r(θ)
[
Q(st, at)− b̂t(st)

]
,

U clipped = clip
(
r(θ), 1− ε, 1 + ε)

)[
Q(st, at)− b̂t(st)

]
,

J clipped(θ) = E
[
min

{
Uoriginal,U clipped

}]
,

(24)

where r(θ) = π(at)
πold(at)

. The first term in the expectation in Eq. (24) is simply the same

expression as in Eq. (6), and the clip function bounds the policy updates within a interval,

where ε is a hyperparameter. Finally, a lower bound of this expression is taken to ensure

a conservative update (Schulman et al., 2017, p. 3). Optimizing this loss ensures that

objective function is more stable and the surrogate objective does not deviate too much

when r(θ) becomes large.

2.4.4. Soft Actor Critic (SAC)

Soft Actor Critic features a model that encourages more exploration in order to ensure

more efficient and stable update to πθ by reformulating the optimization problem in terms

of maximum entropy (Haarnoja et al., 2018). It is an off-policy algorithm18 as illustrated

in Fig. 3, as the agent performs updates based on some sort of a greedy policy in contrast

to on-policy method, where TD error is directly connected to the agent’s current policy

as in Fig. 2. Consider Eq. (16) in which we define the expected sum of rewards as

the objective we wish to maximize through gradient ascent. In SAC this objective is

generalized to

J (π) = E[r(st, at) + φH(π(· | st))], (25)

where φ determines the importance of entropy19 H against the reward function in the

optimization problem by allowing more noise as it gets bigger.

In the soft update, the Bellman recursive relation is defined in order to satisfy Eq. (25)

18Note that SAC, DDPG and TD3 are off-policy algorithms – although an asynchronous version of
A2C could be formulated off-policy. PPO and A2C are on-policy algorithms so they are learning the
value function for one policy as they follow it online.

19As defined in (Goodfellow et al., 2016) to be the negative expectation of the log probability distri-
bution.
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Figure 3: Simplified flow chart of an off-policy actor critic (SAC) control flow.

as

Q(st, at) = r(st, at) + γE[V (st+1)],

V (st+1) = Eπ[Q(st+1, at+1)− φ lnπ(at+1)].

(26)

Similarly to the actor critic setup, two networks are trained corresponding to the value

function and the Q-function with the use of stochastic gradients as derived in Haarnoja

et al. (2018):

JV (st)(θ
V ) = E

[1

2

(
VθV (st)− E[Q(st, at) lnπθV (at)]

)2
]

JQ(st,at)(θ
Q) = E

[1

2

(
Q(st, at)− (r(st, at) + γEµ(s)[Vθ̃V (st+1)])

)2
]
, (27)

where the outer expectation is taken under states and actions sampled from an experience

replay, and the inner expectation in the soft Bellman residual JQ(st,at)(θ
Q) under the

deterministic marginal µ(s) as in Eq. (20). In addition, a target networks trick is used

to stabilize learning by taking updates based on an exponential moving average of the

estimated value function20 as denoted by Vθ̃V .

20This trick has been explored as a way to improve stability in the Deep Q-learning setup, see Wang
et al. (2015).
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Finally, a policy is updated using an optimization step based on the distance between

the new policy function and a transformed Q-function as:

π = argmin
π

DKL

[
π(· | st)

∣∣∣exp(Qold(st, ·)
Zold(st)

]
, (28)

where Zold(st) constitutes a partition function that normalizes the distribution.21. SAC

combines the advantages from DDPG, Actor Critic and maximum entropy frameworks

to achieve more consistent performance, outperforming PPO and DDPG on benchmark

problems (Haarnoja et al., 2018, p. 8). Although its multi-stage optimization process is

arguably more complex, it is suggested that the soft policy approach possibly leads to

better asymptotic performance.

2.4.5. Twin Delayed Deep Deterministic Policy Gradient (TD3)

Twin Delayed DDPG algorithm is another modification of the Q-learning algorithm

with the use of deep networks for function approximation in a deterministic setting. Be-

cause of the large variance in the estimates of the Q-function and the resulting overesti-

mation (Fujimoto et al., 2018), a couple of tricks are proposed in order to stabilize the

learning and restrict the propagation of the error resulting from this bias in the greedy

selection of the actions in the Bellman recursion.

TD3 uses two networks for selecting an action and estimating the Q-value, where the

target network is used for estimation and the current network for action selection. These

networks according to Fujimoto et al. (2018) are not necessarily independent due to slow

updates and so the decoupling is altered by introducing an upper bound of the less biased

estimate by the more biased one as follows:

Lcritic =
1

N

∑
i

(ri + γ min
ω

Q(si+1, µ1(si+1))−Q(si, ai))
2, (29)

where ω is the set of weights learned by the critic networks. Given this loss, the target and

current networks are updated using a soft delayed update similar to the SAC in order to

21The notion of partition function and Boltzmann distribution are concepts from information theory,
see MacKay (2003, Chapter 3)
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stabilize the learning (Dankwa & Zheng, 2019, p. 1). Furthermore, a regularizing method

for training the critic network is introduced with the idea of forcing similar actions to

have similar values and smooth the value estimate as in (Fujimoto et al., 2018, p. 6).

Hence a clipped noise term is added to the sampled action from an experience replay as

described in step 7 of the TD3 algorithm presented in Appendix B, in Fig. B.14.

3. Data

3.1. Raw Data

We collect raw daily open, high, low, and close (OHLC) price and volume data for all

equities in the S&P 500 index and its European counterpart compiled by Bloomberg—the

Bloomberg 500 index (Bloomberg, 2020). In addition, we further collect a sector dataset

according to the S&P sector classification, extracted from nine SPDR sector exchange

traded funds (SPDR) and two iShares ETF’s, namely the Telecommunications (iShares,

b) and Real Estate (iShares, a) funds. Due to computational constraints and a hypothesis

of a change in the market regime, the dataset is restricted to start from 15 October 2008

(t0) and runs until 1 January 2021 with a total of 2974 daily observations. This includes

the estimation period for the sample covariance matrix which is used as a feature during

the training, effectively pushing the training by 252 trading days starting on 2 February

2009. In order to prevent survivorship bias and to ensure completeness of the sample,

securities that do not have at least two years of data before t0 are purged, resulting in a

dataset of 479 securities listed in Europe and 487 U.S. listed stocks.

For estimating the factor model, we use factors constructed by Bloomberg, aggregating

by monthly return on these factors that are constructed using the methodology in Fama &

French (1992). These are the suitably defined risk premia across the section of the assets

in our factor model. In addition, a risk-free proxy is used for computing performance

metrics and excess returns as the 10-year rate on U.S. Treasury bills. In what follows, we

outline the clustering process.
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3.2. Factor Clustering

Training on the whole index is computationally expensive for such a large set of securi-

ties. Additionally, it is not of practical relevance as the resulting portfolios would contain

a very large number of stocks. To divide the datasets into clusters, we take an approach

based on a linear time-series factor model that is specified as follows:

E[Rt,i]−Rf
t = αt,i +

nf∑
j=1

βi(E[Ft,j]−Rf
t )︸ ︷︷ ︸

systematic risk

+ εt,i︸︷︷︸
intrinsic risk

, (30)

where it is assumed that intrinsic risks can be hedged such that E[εt,i] = 0 for a model

with j number of factors across i assets such that the no-arbitrage condition holds.22 For

the purpose of the experiment, this rather strict assumption might be arbitrarily relaxed

as it is not an exercise in retrieving the SDF, but simply good practice to keep it in mind

given the fact that it affects the form of our training datasets.

We follow the four-factor asset pricing model of Carhart (1997), where a filtration

F : Fj ∈ {MKTt, SMBt, HMLt,MOMt} refers to the set of risk premia describing the

investment universe E . These well-known and widely-used factors are (1) MKTt, referring

to market index returns, (2) SMBt referring to the Small Minus Big factor that bases

on a difference between proxy portfolios of small companies and big companies formed

on size and book-to-market ratio or other value indicators, (3) HMLt, the High Minus

Low factor that bases on a difference between value and a growth portfolios formed in

the same way, and (4) MOMt, Momentum, formed as an equal-weighted portfolio of the

difference in the best performing securities in terms of lagged simple returns and the worst

performing ones.

Assuming that the Generalized Gauss-Markov theorem holds, we retrieve β̂i,j by us-

ing a least-squares estimate (Kempthorne, 2013).23 Given the possibility of substitution

effects among the factors, we employ a shrinkage method that has the advantages in re-

22This lemma implies an existence of an SDF which is the main object of interest in the asset pricing
literature and is the building block of no-arbitrage pricing models (Danthine & Donaldson, 2014).

23Note that under the normality assumption on the distribution of residuals, it can be proven that this
is also the MLE estimator. See chapter 14 in Rice (2006) for proof.
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ducing estimation errors out of sample as in Kozak et al. (2020). Although in such a

low-dimensional model this could reduce performance of the SDF as a pricing kernel, this

approach is taken in order to improve the stability of the estimates as the parameters are

later used for sorting. Over a period of 36 months, we estimate a linear model using the L1

and L2 penalties24 and solve the optimization problem in the unconstrained Lagrangian

form:

(α̂, β̂) = argmin
a,b

1

N

N∑
i=1

‖yi − a1− Fb)‖2
2 + λ1

nf∑
j=1

‖bj‖1 + λ2

nf∑
j=1

‖bj‖2
2.

After obtaining the estimates, the datasets are constructed using quantile sorting of the

coefficients β̂j. This β-quantile is defined as

Qβ(p) := inf{β ∈ R : p ≤ F (x)},

where Fβ(X) = P(β ≤ x) is the empirical CDF obtained from the factor model.25 we

summarize the resulting sorted datasets in Table 1 together with their corresponding

quantiles.

Dataset Quantile Range N

Growth 50 {QβHML(0.1)} 50
Momentum 50 {QβMOM(0.9)} 50
Size 50 {QβSMB(0.1)} 50
Growth + Size 100 {QβHML(0.1)} ∪ {QβSMB(0.1)} 100
Momentum + Size 100 {QβMOM(0.9)} ∪ {QβSMB(0.1)} 100
Sector ETF N/A 11

Table 1: Overview of the resulting datasets of the β-quantile sorting.

We construct these sorted portfolios for both the S&P 500 and BE500 indices, resulting

in ten quantile-sorted datasets plus the sector ETF dataset. This provides for means to

test the algorithms on both North American and European equities with a single-factor

24Where we use the convention of a norm being defined as a notion of distance in the Lp space for a
real valued vector x : ‖x‖p := (

∑
j |xj|p)

1
p .

25Note that the definition of the quantile does not require any smoothness or continuity properties to
be required of F (x).
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and multi-factor approach, where the idea is to test if the model is able to capture hedging

opportunities within different factors—or sectors in the sector ETF dataset. Notably, the

constituents of these sorted portfolios remain fixed for remainder of the sample, ensuring

homogeneity in sub samples during learning and training and the trading exercise, which

bases its asset allocation decisions on the learned models.

4. Model Training and Testing Windows

4.1. Model Training

Training neural networks is often a challenging task given the specifics of stochastic

gradient descent optimization techniques. It is also quite computationally expensive and

implemented in cloud computing.26 A softer grid search has been employed on all of the

models in order to search for optimal hyper-parameters as summarized which are given

in Appendix C. This has been done in order to ensure that a stable configuration of the

model is deployed on the data given the difference in the underlying data processes of our

datasets.

α

γ

hp

m1 mn. . .

.

.

.

mk

Figure 4: An exemplary outline of the initial state of a grid search procedure.

The grid search as illustrated Fig. 4 initializes an equidistant grid of hyperparameters

which differs by the model architecture. Most commonly, the learning rate α and the dis-

count factor γ are optimized with model-specific parameters such as batch size or entropy

coefficient in SAC. Note that hyperparameter hp ∈ {H} is increasing the dimensions of

26The models are trained using Google’s cloud service Colab Pro that allowed to parallelize training
on a NVIDIA Tesla P100 GPU. For the models themselves, we use a high-level package that is built on
PyTorch (Liu & Gong, 2020) and provided an interface to use the Stable Baselines library (Hill et al., 2018)
that provides stable implementations of all state-of-the-art algorithms based on OpenAI infrastructure.
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Figure 5: Sample SAC grid search log

the grid, resulting in O(ndim(H)) complexity. Thus, it is computationally expensive to

optimize hyperparameters in this way as there are k × n × (h1 × . . . × hp) number of

models to train and evaluate.27 It is possible to initialize the grid randomly, but since

we are interested in the magnitude of parameters rather than a precise configuration, the

evenly-spaced approach is taken. For example, optimizing the parameter α typically takes

into consideration an array of possible parameters (. . . , 1× 10−4, 1× 10−3, 1× 10−2).

Obtaining training statistics for all of the model runs allows for examination of the

relevant metrics and selection of the most stable model. Fig. 5 exemplarily visualizes the

development of metrices across parameter variants of a search over SAC models for the

SPX Growth 50 dataset. Since it is desirable that the networks learn the Q-function—or

other learned functions—in a stable fashion, we would like to minimize the critic and actor

loss such that the curve is smooth. Critic loss is a standard MSE loss and we want it to

converge towards a particular quantity, whereas the actor loss is a negated version of the

27We have trained approximately 4-12 configurations in the grid for each of the 11 datasets—depending
on training complexity—of which a full soft search has taken approximately two days for each of the
datasets resulting in a total of 24 training days for the search to be conducted.
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Critic loss (Lapan, 2018, ch. 12) and we would like it to smoothly decrease. Similarly, we

would like the entropy loss—or any other endogenous loss function specific to the model—

to be stabilized and decrease in an orderly fashion. From Fig. 5, we see that the best

candidate is the model drawn in red, as other candidate models such as the one drawn in

pink suffer from stability issues. We would therefore pick this model to be our globally

optimal model within our soft search space and use the parameters associated with it in

the testing. These hyperparameter configurations are presented in Appendix C.

4.2. Rolling Test

Having searched for an optimal model, weights w∗ are obtained for each t in the

testing set that starts on 1 January 2019 and ends on 1 January 2021. These weights

are the weights suggested by the RL agents as optimal for each day, and we use them

for rebalancing the testing portfolios. Note that the model is trained with daily data,

but the rebalancing period is set to be longer. We follow the convention of monthly

rebalancing (DeMiguel et al., 2009), which is what is reported, but also conduct tests

for weekly, quarterly and semi-annual rebalancing as robustness checks. The rolling test

as illustrated in Fig. 6 simply executes trades after a period of h trading days given a

vector of optimal weights, repeating this process until T . For the benchmark models, this

implies a rolling estimation of necessary parameters (µp,Σp) and solving the optimization

problem at each tn with the result being another set of optimal weights simulating the

test portfolio. For the factor constrained approach as described in appendix Appendix

A, a new factor model is estimated on a rolling basis.

t0 t1

w∗1

h − Trading period

Rebalance

T (h− 1)

Rolling test
w∗terminal

t(T/(h−2)) T

Figure 6: Rolling test diagram

Given this procedure, we obtain returns for each of the T/h discrete trading periods
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as

rt = w∗t−1 · p[t,t+h) − κ∆w∗t−1 · p[t,t+h), (31)

where we adjust for transaction costs with κ = 0.001 that is subtracted as a fixed amount

scaling, ∆w∗, which represents the trades that would have been executed. It is important

to note that this transaction cost adjustment is implemented during the training of the

RL agents as well, in order to prevent over-trading and reduce the effective number of

bets the model is taking. Subsequently, these returns are aggregated geometrically as∏T
i=1(1 + ri), ∀r ∈ rtest, and a cumulative performance of the test portfolio is obtained.

From these returns, we compute the performance and risk measures and other results as

presented in the next section.

5. Empirical results and discussion

5.1. Single-Factor Equity Sets

Results for the single factor datasets are detailed in Table 2 and Table 3. Firstly, we

focus on the results for the North American equity datasets. For the S&P 500 single-

factor datasets in Table 2, we find that all of the algorithms except A2C outperform the

naive equal-weight portfolio on a risk-adjusted basis in the Growth 50 dataset. None

of them, however, are able to beat this benchmark on the Momentum and Size datasets.

Comparing the performance to the mean-variance approaches, we see that these portfolios

consistently beat the equal risk contribution as well as the minimum variance portfolio

in the case of SAC and DDPG. Interestingly, none of the algorithms beat the factor

constrained portfolio in terms of performance.

In terms of skewness, the RL agents perform reasonably well at reducing left-tail

risk uniformly in the Growth and Momentum factor, but struggle with the Size dataset.

Although all of them beat the mean-variance benchmarks in the Size factor set, negative

skewness remains larger than the equal-weight portfolio. There are no large deviations in

terms of drawdowns from the equal-weight portfolio, although generally the RL models

deflate the drawdowns slightly. This is true particularly for the SAC that is the only

model that is able to decrease drawdown across all of the three factor datasets, and hence
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offers significant risk-reducing potential.

Growth 50 Momentum 50 Size 50

rann SRα Max DD skew(r) rann SRα Max DD skew(r) rann SRα Max DD skew(r)

A2C 37.1% 1.34 -32.8% -0.35 25.9% 0.95 -35.5% -0.75 2.54% 0.03 -57.8% -0.73
DDPG 36.4% 1.30 -34.0% -0.48 24.4% 0.94 -32.5% -0.80 3.8% 0.05 -59.9% -0.59
PPO 35.0% 1.27 -34.6% -0.53 26.2% 0.98 -33.5% -0.77 1.0% -0.01 -59.6% -0.81
SAC 37.6% 1.40 -32.3% -0.52 26.6% 1.00 -32.6% -0.77 4.2% 0.07 -57.3% -0.69
TD3 38.3% 1.41 -32.% -0.37 26.0% 0.98 -33.8% -0.66 2.3% 0.02 -57.9% -0.48
EW 36.8% 1.36 -33.1% -0.45 27.4% 1.04 -33.5% -0.76 5.2% 0.09 -57.5% -0.54
MV 25.2% 1.13 -22.3% -0.06 22.4% 0.97 -28.6% -1.04 3.1% 0.05 -41.7% -0.86
ER 27.8% 1.19 -26.7% -0.59 19.3% 0.84 -29.6% -0.94 -2.3% -0.14 -44.5% -0.94
FC 53.1% 1.67 -28.4% -0.45 43.8% 1.46 -31.3% -0.61 38.9% 1.04 -41.5% 0.10
MSR 46.2% 1.70 -30.4% -0.91

Table 2: Annualized monthly returns, Sharpe ratios, maximum draw down, and skewness for the out
of sample tests of the Reinforcement Learning agents, the naive 1/N equal weights portfolio, and the
Minimum Variance, Equal Risk Contribution, Factor Constrained, and Maximum Sharpe Ratio portfolios
for the S&P 500 single factor datasets.

Growth 50 Momentum 50 Size 50

rann SRα Max DD skew(r) rann SRα Max DD skew(r) rann SRα Max DD skew(r)

A2C 17.6% 0.90 -26.6% -1.95 5.3% 0.11 -51.0% -0.31 -4.9% -0.21 -46.6% -0.49
DDPG 18.2% 0.92 -27.2% -1.88 7.8% 0.19 -51.0% -0.37 -5.1% -0.21 -46.8% -0.47
PPO 17.5% 0.85 -27.6% -2.03 6.6% 0.15 -51.4% -0.33 -5.9% -0.24 -47.4% -0.40
SAC 19.5% 0.97 -27.1% -1.78 9.5% 0.25 -51.1% -0.51 -5.2% -0.22 -45.2% -0.41
TD3 18.0% 0.87 -27.7% -1.99 4.8% 0.09 -51.5% -0.27 -6.2% -0.25 -46.6% -0.63
EW 17.0% 0.84 -27.4% -1.96 5.1% 0.11 -51.3% -0.25 -5.6% -0.23 -46.6% -0.58
MV 8.2% 0.44 -21.7% -1.37 -2.4% -0.16 -44.1% -1.07 -8.2% -0.47 -35.1% -1.28
ER 6.1% 0.30 -21.8% -1.56 0.1% 0.96 -41.2% -0.72 13.3% -0.49 -36.5% -1.59
FC 42.2% 1.68 -28.9% -0.92 24.8% 0.93 -38.5% -0.97 15.1% 0.44 -45.7% -0.4
MSR 42.24% 1.95 -23.5% -0.44 25.1% -0.06 -38.5% -1.03 -8.6% 0.39 -45.7% -0.39

Table 3: Annualized monthly returns, Sharpe ratios, maximum draw down, and skewness for the out
of sample tests of the Reinforcement Learning agents, the naive 1/N equal weights portfolio, and the
Minimum Variance, Equal Risk Contribution, Factor Constrained, and Maximum Sharpe Ratio portfolios
for the Bloomberg 500 single factor datasets.

Fig. 7 provides evidence that the 5% VaR is very similar for the equal-weight bench-

mark and the RL models, where only the SAC and TD3 perform better in the Momentum

and Growth factors, but the problems with the Size dataset remains. In terms of the mean-

variance approaches, both feature a lower VaR than RL for the Size factor. Minimum

variance and equal risk parity also outperform on the Growth and Momentum factors, but

we find that all of the RL models outperform the factor constrained specification in the

Momentum factor. For A2C, SAC an TD3, better performance is noted for the Growth

50 dataset with a slightly lower VaR than the benchmark.

For the European equities, the RL algorithms seem to be more successful at outper-

forming the equal-weight in the performance measures. All of them yield a slightly better
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Figure 7: Cornish-Fisher Adjusted Value at Risk for the S&P 500 equity sets.

performance on the Growth 50 dataset with SAC beating the EW Sharpe by 11%. For

the Momentum and Growth factors, TD3 was less successful, but SAC and DDPG still

yield a significant outperformance. All of the algorithms outperform the minimum vari-

ance portfolio, but fall short when compared to the linear factor constrained portfolio.

An interesting anomaly happens with the Momentum factor, where the equal parity out-

performs not only the RL models but also all of the mean-variance benchmarks and the

MSR which often results in a portfolio that is largely overfit and very concentrated.28

Assessing the distributional properties of the result, RL seems to increase the negative

skew in the Growth dataset, where all of the models outperform the benchmark, suggesting

that they are taking more risky bets, effectively negating any risk-reducing behavior. In

the Momentum and Size dataset, however, they reduce negative skewness and beat the

mean-variance benchmark as well as the EW benchmark in the Size factor. Although the

drawdown remains to be around the same level as the EW benchmark, this shows that

there could be benefits from reducing the left-tail risk. In contrast to the U.S. equities,

RL algorithms perform better in terms of risk measures what is presented in Fig. 8 as the

difference between the VaR of RL algorithms and the FC mean-variance optimization.

For the Growth factor dataset, all of the RL algorithms perform better than the factor

model. In the Size factor, this result is not as pronounced, although notably the SAC

algorithm outperforms the FC and the EW. Momentum factor shows that the mean-

variance outperforms with respect to VaR measures, although SAC yields better results

28Since this is a result of a greedy search over the efficient frontier, it often results in a small number
of positions being very overweight due to unstable moments estimates.
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than the EW again.

Figure 8: Cornish-Fisher Adjusted Value at Risk for the Bloomberg 500 equity sets.

5.2. Multi-Factor Equity Sets

In the two-factor datasets, where we combine Growth and Momentum factors with the

Size factor in order to learn a hedging strategy, RL performs better on the U.S securities

than the European-listed stocks. Hedging Growth with Size, SAC and PPO stands out

with better SRα. In terms of risk, SAC is able to reduce the drawdown slightly, albeit

skewness remains to be about the same level. These two models also beat MV, but are

unable to beat the linear factor as well as the equal parity portfolios. Notably, the ER

portfolio is able to reduce the DD of the test strategy by more than 13% from the EW

benchmark.

For the Momentum combined with Size equity set, TD3 seems to perform well at

reducing the left-tail risk as well as outperforming the EW benchmark. Similarly, SAC

seems to perform just as good as EW and PPO and DDPG also perform considerably well

with DDPG increasing the SRα by 21%, while still reducing drawdowns slightly. With

regards to the mean-variance benchmarks, DDPG outperforms MV and ER but falls short

of the linear model again.

Looking at the results tested on the European stocks, the RL agents perform rather

poorly with only TD3 and A2C outperforming the EW benchmark on Growth & Size

and Momentum & Size, in that order. However, it does so with problems to learn a good

hedging strategy, as we see in the case of TD3 resulting in inflated negative skew. These

results show that EW portfolio is superior to mean-variance approaches too as only the

30



Growth + Size 100 Momentum + Size 100

rann SRα Max DD skew(rann) rann SRα Max DD skew(rann)

A2C 19.8% 0.55 -45.9% -0.75 17.6% 0.51 -44.5% -0.95
DDPG 20.1% 0.58 -43.6% -0.86 20.6% 0.63 -42.1% -0.89
PPO 22.0% 0.63 -44.2% -0.83 18.8% 0.55 -44.5% -0.87
SAC 21.8% 0.66 -42.5% -0.82 17.4% 0.51 -43.6% -0.88
TD3 21.1% 0.61 -45.0% -0.80 18.6% 0.54 -43.3% -0.73
EW 21.3% 0.62 -43.9% -0.83 17.9% 0.52 -43.9% -0.88
MV 16.1% 0.58 -32.6% -0.56 13.1% 0.41 -39.0% -1.00
ER 16.3% 0.68 -29.4% -0.77 14.4% 0.60 -29.8% -1.05
FC 23.0% 0.70 -41.2% -0.52 21.6% 0.65 -40.4% -0.76
MSR 20.6% 0.62 -40.4% -0.77

Table 4: Annualized monthly returns, Sharpe ratios, maximum draw down, and skewness for the out
of sample tests of the Reinforcement Learning agents, the naive 1/N equal weights portfolio, and the
Minimum Variance, Equal Risk Contribution, Factor Constrained, and Maximum Sharpe Ratio portfolios
for the S&P 500 multi-factor datasets.

factor model beats the EW in both of the cases. In contrast to this, the RL approach

works better for all of the models except for PPO—where after inspecting the trading

pattern, transaction costs probably cut from the performance considerably. Both the MV

and ER approaches perform worse with ER, failing quite hard in the Momentum-Size

dataset. In general, the RL approach underperforms but not by a wide margin, and

seems to have quite stable results not deviating from the EW portfolio to a large extent.

Growth + Size 100 Momentum + Size 100

rann SRα Max DD skew(rann) rann SRα MAX DD skew(rann)

A2C 4.2% 0.11 -38.5% -1.20 1.2% -0.01 -47.1% -0.50
DDPG 4.2% 0.11 -37.0% -1.26 -0.9% -0.08 -47.1% -0.38
PPO 2.0% 0.02 -39.5% -1.64 -1.0% -0.08 -47.3% -0.60
SAC 4.6% 0.12 -37.8% -1.25 -0.9% -0.08 -48.8% -0.58
TD3 5.7% 0.17 -37.3% -1.38 -0.3% -0.06 -47.4% -0.41
EW 5.0% 0.14 -37.4% -1.27 0.9% -0.02 -47.2% -0.48
MV 1.2% -0.01 -33.5% -1.31 -3.9% -0.2 -42.9% -0.78
ER 2.6% 0.07 -23.7% -1.64 -6.4% -0.39 -36.0% -1.48
FC 13.6% 0.46 -39.0% -1.48 3.4% 0.06 -46.9% -0.67
MSR 11.5% 0.38 -38.6% -1.49 3.2% 0.06 -46.9% -0.67

Table 5: Annualized monthly returns, Sharpe ratios, maximum draw down, and skewness for the out
of sample tests of the Reinforcement Learning agents, the naive 1/N equal weights portfolio, and the
Minimum Variance, Equal Risk Contribution, Factor Constrained, and Maximum Sharpe Ratio portfolios
for the Bloomberg 500 multi-factor datasets.

In the sector ETF dataset we test for the ability for the models to hedge across the
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sectors, as there is a different and broader set of exposures for the model to learn. The

results show that the simple A2C has been the most successful to learn these paterns, with

all of the other models having a relatively good performance as well. DDPG and SAC

have been able to reduce the DD and negative skewness the most, suggesting that they

were able to capture some of the pricing structure of these complex29 ETF’s. Minimum

Variance and Equal Risk deliver lower risk-adjusted returns, but again we see that the

factor constrained strategy is superior. Achieving a Sharpe close to the MSR portfolio, it

is able to reduce the skew by almost a half while pushing the drawdowns down by 5%.

Sector ETF

rann SRα Max DD skew(r)

A2C 16.5% 0.58 -36.1% -0.78
DDPG 12.9% 0.44 -36.3% -0.66
PPO 12.5% 0.42 -37.6% -0.92
SAC 13.1% 0.46 -35.3% -0.73
TD3 14.8% 0.50 -37.0% -0.77
EW 13.7% 0.47 -36.9% -0.77
MV 8.6% 0.33 -27.7% -0.41
ER 8.1% 0.26 -34.4% -0.70
FC 25.1% 0.87 -31.2% -0.39
MSR 25.1% 0.88 -31.6% -0.68

Table 6: Annualized monthly returns, Sharpe ratios, maximum draw down, and skewness for the out
of sample tests of the Reinforcement Learning agents, the naive 1/N equal weights portfolio, and the
Minimum Variance, Equal Risk Contribution, Factor Constrained, and Maximum Sharpe Ratio portfolios
for the Sector ETF dataset.

5.3. Inference and Robustness

In order to look at the out of sample stability of the results, we would like to run

many trials on different samples and ideally obtain some sort of a bootstrap result, or

arrive at a more robust result. This is due to the results being representative of just

one instance of a sequence of random variables of prices. Because of the complexity of

training and optimizing RL models, however, such a Monte Carlo experiment is hard to

conduct. Hence, in addition to the monthly rolling test, a weekly, quarterly and semi-

annual windows have been tested and checked for large divergences that would suggest a

high turnover of the strategy rendering the model useless for practical purposes. Referring

29Complex from the standpoint of an asset pricing equation as there are many risk premia defining an
ETF.
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to Fig. 9, we observe that most of the rankings of the algorithms in terms of performance

propagate through these windows. Notably, the PPO algorithm seems to deviate more

across the windows with more unstable profile due to over-trading as confirmed by the

animations we produced for the rebalancing process in the tests. This has been the

case with all of the datasets,30 which is interesting due to the PPO’s construction and

conservative updates mechanism.
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Figure 9: BE500 Growth 50 Rolling Tests Cumulative Return

30Even if the ranking changed slightly, a clear winner and a clear loser algorithm has emerged. This
suggests using a voting ensemble of the models.
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Another issue, that is often times overlooked when such rolling tests are conducted

is the large variance of the Sharpe Ratio estimator. It is important to realize that all of

the reported parameters such as the sample statistical moments are estimators and they

have the same distributional properties of a parameter. Therefore, we need a probabilistic

approach to assess the relative performance of the models. Given the non-normal features

of the observed distribution of returns we need a way to account for the third and fourth

moment as they might lead to a large inflation of the sample Sharpe Ratio due to the

fact that any observed Sharpe Ratio can be expressed as a combination of two Gaussians

with different parameters (Harvey et al., 2016, p. 6). This fact is used to prove that the

parameter follows a normal distribution and therefore we formulate a test statistic in the

form of

ˆPSR(SRα) = z

 (ŜR− SRα)
√
T − 1√

1− γ̂3ŜR + γ̂4−1
4
SRα

 , (32)

where ŜR is the estimate, SRα is the reference SR, γ̂3, γ̂4 are the skewness and kurtosis

estimates and z{·} is the Standard Normal cdf. We call this the Probabilistic Sharpe

Ratio (Harvey et al., 2016, p. 9), and essentially we interpret it as the probability that

the observed Sharpe ratio is higher than the reference. This statistic is a function of T as

well, so it requires larger returns in order to establish statistical significance.

Using Eq. (32), we construct a hypothesis test of the form

H0 : SRtest = ω,

H1 : SRtest > ω,

with a rejection threshold of 1 − P (ω ≤ ŜRtest) > α, for a statistical significance level

α. This framework can be used for deflating a reported Sharpe ratio, but we are rather

interested in comparing the PSR on a relative level. For example, from left side of Fig. 10

we observe that setting ω = 0, the so-called skill-less level, all of the algorithms together

with the benchmark pass the 95% significance level and with this level of confidence

we conclude that the population SRtest > 0. In addition, we see that based on this

probabilistic assessment, SAC and TD3 have a larger probability of rejecting the null,
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which is desirable. The right side of Fig. 10 suggests that if we run this test on an array

of different possible SR, the majority of the algorithms fall short of α = 10% somewhere

between 0 and 0.05. Such an inverted sigmoid is present in all of the datasets, albeit with

different cutoffs for statistical significance.

To compare the models, we decided to use a relative percentage marginal for a given

test where ω = 0. Note that we have established that the function mapping the P (SRtest >

ω|H0) → SR∗ does not yield a linear relationship, and therefore it is hard to compare

the magnitude of the marginals across the datasets as these functions feature different

domain sets. It is, however, a good proxy for seeing how the models compare against the

benchmark.
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Figure 10: PSR test on SPX Growth 50

Dataset A2C DDPG PPO SAC TD3

SPX Growth 50 -0.02 -0.55 -0.88 0.40 0.59
SPX Momentum 50 -1.82 -2.01 -1.20 0.02 -1.10
SPX Size 50 -3.42 -2.28 -5.71 -1.12 -3.99
SPX Growth + Size 100 -2.66 -1.52 0.37 1.43 -0.36
SPX Momentum + Size 100 -0.45 4.28 1.23 -0.42 0.88
BE500 Growth 50 1.49 1.97 0.19 3.18 0.74
BE500 Momentum 50 0.01 4.46 2.24 7.69 -1.13
BE500 Size 50 1.10 1.10 -0.53 0.56 -1.09
BE500 Growth + Size 100 -1.67 -1.67 -6.78 -1.11 1.65
BE500 Momentum + Size 100 0.57 3.43 -3.44 -3.42 -2.29
Sector ETF 4.54 -1.31 -2.29 -0.43 1.3

Table 7: PSR pct. marginal over EW for H0 : SRtest > 0

The results show in Fig. 10 suggest, that the algorithms perform better on the Growth

and Momentum factors as evident from the positive marginals. In the case of the European
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equities, most of the algorithms except for TD3 in the Momentum dataset outperformed

the EW benchmark. Generally, they seemed to struggle more with the U.S stocks. The

only algorithm that performed relatively well on U.S as well as European single factor

data was the SAC. Notably, for the multi-factor datasets the simpler A2C and DDPG

have performed better than the more complex architectures such as PPO, SAC and TD3.

This suggests that different architectures have advantages in learning in different systems.

6. Conclusions

In this paper, we evaluate and benchmark state of the art Model-Free Reinforcement

Learning model architectures against the Occam’s Razor approach of equal-weight port-

folio and the traditional mean-variance benchmarks. Evaluating the performance of these

models on the European and American equities within a range of different contexts such as

the single and multi-factor datasets, a complementary approach to portfolio management

is proposed. This is done without the need to estimate the problematic parameters such

as expected returns or the introduction of specific constraints to the SDF. Notably, it has

been achieved using a sparse information set consisting only of price data and features

transformed thereof.

The main conclusions of this work are summarized in four points. Firstly, we conclude

that the model-free architectures have outperformed the Mean-Variance approaches as

demonstrated by the results and the probabilistic assessment of the return series. The

resulting portfolios were more stable as a consequence of the models successfully capturing

a part of the nonlinear structure in the SDF. This ability to capture the mispricings has

not been, however, as successful as the inclusion of risk-premia in the construction of

the conditional mean-variance portfolio. The second conclusion ipso facto implies that

the factor model has outperformed the RL approach in agreement with the findings of

Chen et al. (2019). Third, we note that the performance against the 1
N

portfolio is largely

tied and it is inconclusive to say that these algorithms outperform this benchmark in this

setting. Although notably in some contexts such as the European Growth and Momentum

datasets it has performed very well, in others, such as the Size datasets in both U.S. and
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EU equities, it fell short. The most consistent model architecture has turned out to

be the SAC which hints at the inclusion of entropy within the model-free setting to be

an important part of learning such nonlinear structures in a limited data setting as it

introduces a lot of exploration into the framework. Fourth, we conclude that there are

potential hedging benefits in using the RL approach as we have demonstrated that the

models are successful at reducing left-tail risks out of the sample. This is certainly subject

to the construction of a more complex decision system that would potentially make use

of an ensemble model as different architectures performed well in different subsets of the

data.

This paper is complementary to the current literature applying Machine Learning and

Deep Learning in the Reinforcement Learning context and demonstrates the usefulness of

such methods. Questions about interpretability as well as the use of coarser data frequency

are subject to further research. Similarly, different asset classes and exposures should be

tested to draw more general conclusions about the applicability of this approach. Since

this is a rapidly developing field, an increasing number of papers considering similar ap-

plications are expected to be written in financial applications. New models from the field

of computer science should be further considered for the Portfolio Allocation problem.

As such, this paper provides a comprehensive review of the performance of the current

state-of-the-art algorithms and provides a study similar to DeMiguel et al. (2009) in the

context of Reinforcement Learning methods. Its use is of direct interest to portfolio man-

agers as an alternative approach to construct and support investment strategies with an

actionable output that consists of optimal weights similar to the Mean-Variance approach.
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Appendix A. Mean-Variance Optimization

Quadratic Risk Utility
Quadratic utility is the most common formulation of the portfolio allocation problem

with a non negative parameter λ controlling for the level of risk-aversion determining the
efficient frontier of optimal portfolios. In the first stage of solving this problem we solve:

min λwTΣw − µw, λ ∈ R+

s.t. wT1 = 1

w � 1.

In the second step we choose a satisfaction measure which conforms the definition of
a reward function r(at, st) such as the sample Sharpe Ratio µ̂test−rf

σ̂test
and search over the

set of optimal portfolios such that:

w∗ = argmax
λ

(r(at, st)).

We search for w∗ greedily since λ is a monotonically increasing function and thus we
obtain a global maximum.

Global Minimum Variance
The advantage of a GMV portfolio is that there is no need for an estimate of µ as

in the standard mean-variance formulation. We are able solve for this portfolio either
analytically or using a simple convex program that reduces to the case where the least
amount of risk is taken on:

min wTΣw

s.t. wT1 = 1

w � 1.

Equal Risk Contribution
Risk contribution portfolios look at the optimization problem from a perspective of

marginal volatilities of each of the assets and their contribution to the overall risk of the
portfolio. An Equal Risk Contribution portfolio forces each of the assets to contribute
an equal amount of risk such that the weights adjust the volatility contribution to be at
parity with other assets.

We can define the volatility of a portfolio as σp =
√

wTΣw and for each asset i ∈ E
the marginal risk contribution:

σi =
∂σp
∂wi

=⇒ σp =

N∑
i

σi, (by Euler’s theorem)

since σp is a homogeneous function of degree one expressible as:
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σp(w) =

N∑
i=1

wi
∂σi
∂wi

.

For a complete proof see Maillard et al. (2011). Expressing the above equation in a
vector form we obtain the convex objective we can minimize:

min
N∑
i=1


σp
N
− wi ·

∑
i∈E

w

σp


s.t. wT1 = 1

w � 1.

Factor Constrained Portfolio
Given a time-series factor model of the form 30 we can estimate the covariance matrix

as:
Σ̂ = FΣFFT + ψ̂,

where F is the vector of factor loadings, ΣF the sample covariance of the factor loadings
and ψ̂ is the diagonal matrix of the form diag(σ̂1, . . . , σ̂N). We can then solve for a factor
constrained portfolio that limits the exposure on a particular factor by the vector υ. We
use the value of 0.2 or 20% as a limit of the portfolio exposure for a particular factor.
Given the fact that we only use long-only portfolio it is hard to decrease this limit as there
might not be such a solution that would satisfy this constraint. We express the problem
as a maximization of the objective as described in Diamond & Boyd (2016):

max µTw − γ(υΣ̂υ + wT ψ̂w)

s.t. wT1 = 1

FTw = υ

w � 1.
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Appendix B. Pseudo Code

Figure B.11 Q-learning algorithm for the portfolio allocation problem.
Input: investment universe E , price history P, feature matrix X
Output Q∗(s, a)→ w∗

1: procedure Q-learning procedure
2: Initialize Q(s, a) ∀ s ∈ S with Q(T, ·) = 0, α ∈ [0, 1]
3: repeat
4: for t = 0, . . . , T do
5: select an action a′t based on a policy a′t = maxQ(s, a).
6: take action a′t and observe {r, s′}
7: update the Q-table using Eq. (14):
8: Q(s, a)← Q(s, a) + α[r + γmax

a
Q(s′, a)−Q(s, a)]

9: if T mod hretrain = 0 then Update network parameters θ̃ ← θ̂
10: end if
11: end for
12: until T > Tmax or terminal.
13: end procedure

Figure B.12 Policy Gradient algorithm for the portfolio allocation problem.
Input: investment universe E , price history P, feature matrix X
Output π∗(s, a) = w∗

1: procedure Policy Gradient update
2: Initialize cache and parameters {C}, θ0, α ∈ [0, 1]
3: repeat
4: for t = 0, . . . , T do
5: observe {st, rt}
6: obtain action (by sampling from MDP) or π
7: update actor network parameters θ ← θ + αQ(s, a)∇θ lnπ(a, s)
8: cache rewards and gradients in {C}
9: update critic network with TD error (if present)
10: end for
11: until convergence.
12: end procedure
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Figure B.13 DDPG algorithm
Initialize actor and critic networks Q(s, a | θ), µ(s | θµ) with random weights
along with target networks Q′, µ′, θQ, , θµ respectively.
Initialize experience replay cache C

1: procedure
2: for t = 0, . . . , S do
3: Initialize a noise process N , Observe s0

4: for t = 0, . . . , T do
5: select action at = µ(st) +N
6: observe rt | st and st+1 and store the array in the replay cache
7: sample from the cache to obtain a minibatch (si, ai, ri, si+1)

iid∼ {C}
8: update critic by minimizing:

L = 1
N

∑
i(ri + γQ′(si+1, µ

′(si+1) | θQ′))−Q(si, ai))
2

9: update actor using the sampled policy gradient:
∇θµ ≈ 1

N

∑
i∇aQ(s, a)∇θµµ(s)

10: perform a soft-update of weights for:
Q′, µ′ : θtarget ← τθnet + (1− τ)θtarget

11: end for
12: end for
13: end procedure

Figure B.14 TD3 algorithm
Initialize actor and critic networks Q(s, a | θ), µ(s | θµ) with random weights
along with target networks Q′, µ′ θQ, θµ respectively
initialize experience replay cache C

1: procedure
2: for t = 0, . . . , T do
3: initialize a noise process N , Observe s0

4: select action at = µ(st) +N
5: observe rt | st and st+1 and store the array in C
6: sample from the cache to obtain a minibatch (si, ai, ri, si+1)

iid∼ {C}
7: smooth the target policy ãt = π(s)t + ε, ε = clip(N (0, σ),−c, c), where

c is in the neighbourhood of at
8: update the critic nets according to the loss in Eq. (29) using ãt
9: if t mod hretrain then
10: update actor weights using the sampled policy gradient:

∇θµ ≈ 1
N

∑
i∇aQ(s, a)∇θµµ(s)

11: update target actor and critic networks with a soft update
12: end if
13: end for
14: end procedure
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Appendix C. Model Hyperparameters

A2C PPO DDPG SAC TD3
α 0.01 0.01 0.001 0.0001 0.005
γ 0.001 0.1

batch 512 512 256 512
steps 60K 80K 60K 60K 60K

SPX Growth 50

A2C PPO DDPG SAC TD3
α 0.01 0.01 0.001 0.0001 0.01
γ 0.001 0.1

batch 512 512 256 512
steps 60K 80K 60K 60K 60K

SPX Momentum 50

A2C PPO DDPG SAC TD3
α 0.01 0.01 0.01 0.0001 0.005
γ 0.001 0.1

batch 256 256 256 512
steps 60K 80K 60K 60K 60K

SPX Size 50

A2C PPO DDPG SAC TD3
α 0.01 0.001 0.01 0.0001 0.005
γ 0.001 0.1

batch 256 256 256 512
steps 60K 80K 60K 60K 60K

BE 500 Growth 50

A2C PPO DDPG SAC TD3
α 0.01 0.001 0.01 0.0001 0.005
γ 0.001 0.1

batch 256 256 128 256
steps 60K 80K 60K 60K 60K

BE500 Momentum 50

A2C PPO DDPG SAC TD3
α 0.01 0.001 0.0001 0.001 0.005
γ 0.001 0.1

batch 256 512 256 512
steps 60K 80K 60K 60K 60K

BE 500 Size 50
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A2C PPO DDPG SAC TD3
α 0.01 0.001 0.001 0.0001 0.005
γ 0.001 0.1

batch 256 256 256 256
steps 60K 80K 60K 60K 60K

SPX Growth + Size 100

A2C PPO DDPG SAC TD3
α 0.01 0.01 0.001 0.001 0.005
γ 0.001 0.1

batch 512 128 512 512
steps 60K 80K 60K 60K 60K

SPX Momentum + Size 100

A2C PPO DDPG SAC TD3
α 0.01 0.001 0.001 0.0001 0.005
γ 0.001 0.1

batch 256 256 256 256
steps 60K 80K 60K 60K 60K

BE500 Growth + Size 100

A2C PPO DDPG SAC TD3
α 0.01 0.01 0.001 0.001 0.005
γ 0.001 0.1

batch 512 128 512 512
steps 60K 80K 60K 60K 60K

BE500 Momentum + Size 100

A2C PPO DDPG SAC TD3
α 0.01 0.001 0.001 0.0001 0.005
γ 0.001 0.1

batch 512 128 256 512
steps 60K 80K 60K 60K 60K

Sector ETF
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